(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: TimesPlusUserDef
public class TimesPlusUserDef {
public static void main(String[] args) {
int x, y;
x = args[0].length();
y = args[1].length();
times(x, y);
}

public static int times(int x, int y) {
if (y == 0)
return 0;
if (y > 0)
return plus(times(x, y - 1), x);
return 0;
}

public static int plus(int x, int y) {
if (y > 0) {
return 1 + plus(x, y-1);
} else if (x > 0) {
return 1 + plus(x-1, y);
} else {
return 0;
}
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
TimesPlusUserDef.main([Ljava/lang/String;)V: Graph of 134 nodes with 0 SCCs.

TimesPlusUserDef.times(II)I: Graph of 47 nodes with 0 SCCs.

TimesPlusUserDef.plus(II)I: Graph of 62 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 24 rules for P and 38 rules for R.


Combined rules. Obtained 2 rules for P and 8 rules for R.


Filtered ground terms:


1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1364_1_plus_InvokeMethod(x1, x2, x3, x5, x6)
1333_0_plus_LE(x1, x2, x3, x4) → 1333_0_plus_LE(x2, x3, x4)
Cond_1333_0_plus_LE1(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE1(x1, x3, x4, x5)
1380_1_plus_InvokeMethod(x1, x2, x3, x4) → 1380_1_plus_InvokeMethod(x1, x3, x4)
Cond_1333_0_plus_LE(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE(x1, x3, x4, x5)
1537_0_plus_Return(x1, x2, x3) → 1537_0_plus_Return(x2, x3)
1580_0_plus_Return(x1) → 1580_0_plus_Return
1397_0_plus_Return(x1, x2) → 1397_0_plus_Return
1379_0_plus_Return(x1, x2, x3, x4) → 1379_0_plus_Return(x2, x3)
1351_0_plus_Return(x1, x2) → 1351_0_plus_Return

Filtered duplicate args:


1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → 1364_1_plus_InvokeMethod(x1, x3, x4, x5)
1333_0_plus_LE(x1, x2, x3) → 1333_0_plus_LE(x1, x3)
Cond_1333_0_plus_LE1(x1, x2, x3, x4) → Cond_1333_0_plus_LE1(x1, x2, x4)
Cond_1333_0_plus_LE(x1, x2, x3, x4) → Cond_1333_0_plus_LE(x1, x2, x4)

Filtered unneeded arguments:


1380_1_plus_InvokeMethod(x1, x2, x3) → 1380_1_plus_InvokeMethod(x1, x2)
1364_1_plus_InvokeMethod(x1, x2, x3, x4) → 1364_1_plus_InvokeMethod(x1, x3, x4)

Combined rules. Obtained 2 rules for P and 8 rules for R.


Finished conversion. Obtained 2 rules for P and 8 rules for R. System has predefined symbols.




Log for SCC 1:

Generated 12 rules for P and 97 rules for R.


Combined rules. Obtained 1 rules for P and 26 rules for R.


Filtered ground terms:


457_0_times_NE(x1, x2, x3, x4) → 457_0_times_NE(x2, x3, x4)
Cond_457_0_times_NE(x1, x2, x3, x4, x5) → Cond_457_0_times_NE(x1, x3, x4, x5)
1580_0_plus_Return(x1, x2) → 1580_0_plus_Return(x2)
Cond_1380_1_plus_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_1380_1_plus_InvokeMethod1(x1, x4, x5)
1397_0_plus_Return(x1, x2) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(x1, x2, x3, x4) → 1380_1_plus_InvokeMethod(x1, x3, x4)
Cond_1380_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → Cond_1380_1_plus_InvokeMethod(x1, x2, x4, x5)
1351_0_plus_Return(x1, x2) → 1351_0_plus_Return
1333_0_plus_LE(x1, x2, x3, x4) → 1333_0_plus_LE(x2, x3, x4)
Cond_1333_0_plus_LE7(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE7(x1, x3, x4, x5)
1550_0_plus_Return(x1, x2, x3) → 1550_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE6(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE6(x1, x3, x4, x5)
1507_0_plus_Return(x1, x2, x3) → 1507_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE5(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE5(x1, x3, x4, x5)
1459_0_plus_Return(x1, x2, x3) → 1459_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE4(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE4(x1, x3, x4, x5)
1417_0_plus_Return(x1, x2, x3) → 1417_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE3(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE3(x1, x3, x4, x5)
1387_0_plus_Return(x1, x2, x3) → 1387_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE2(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE2(x1, x3, x4, x5)
Cond_1333_0_plus_LE1(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE1(x1, x3, x4, x5)
1537_0_plus_Return(x1, x2, x3, x4) → 1537_0_plus_Return(x2, x3, x4)
Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x6, x7)
1379_0_plus_Return(x1, x2, x3, x4) → 1379_0_plus_Return(x2, x3)
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1364_1_plus_InvokeMethod(x1, x2, x3, x5, x6)
Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod2(x1, x3, x4, x6)
Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x6)
Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x6, x7)
Cond_1333_0_plus_LE(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE(x1, x3, x4, x5)
1522_0_times_Return(x1, x2) → 1522_0_times_Return(x2)
1566_0_times_Return(x1, x2) → 1566_0_times_Return(x2)
1361_0_times_Return(x1, x2) → 1361_0_times_Return
596_0_times_Return(x1, x2, x3, x4) → 596_0_times_Return(x2)

Filtered duplicate args:


754_1_times_InvokeMethod(x1, x2, x3, x4) → 754_1_times_InvokeMethod(x1, x3, x4)
457_0_times_NE(x1, x2, x3) → 457_0_times_NE(x1, x3)
Cond_457_0_times_NE(x1, x2, x3, x4) → Cond_457_0_times_NE(x1, x2, x4)
1333_0_plus_LE(x1, x2, x3) → 1333_0_plus_LE(x1, x3)
Cond_1333_0_plus_LE7(x1, x2, x3, x4) → Cond_1333_0_plus_LE7(x1, x2, x4)
Cond_1333_0_plus_LE6(x1, x2, x3, x4) → Cond_1333_0_plus_LE6(x1, x2, x4)
Cond_1333_0_plus_LE5(x1, x2, x3, x4) → Cond_1333_0_plus_LE5(x1, x2, x4)
Cond_1333_0_plus_LE4(x1, x2, x3, x4) → Cond_1333_0_plus_LE4(x1, x2, x4)
Cond_1333_0_plus_LE3(x1, x2, x3, x4) → Cond_1333_0_plus_LE3(x1, x2, x4)
Cond_1333_0_plus_LE2(x1, x2, x3, x4) → Cond_1333_0_plus_LE2(x1, x2, x4)
Cond_1333_0_plus_LE1(x1, x2, x3, x4) → Cond_1333_0_plus_LE1(x1, x2, x4)
Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5, x6) → Cond_1364_1_plus_InvokeMethod3(x1, x2, x4, x5, x6)
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → 1364_1_plus_InvokeMethod(x1, x3, x4, x5)
Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4) → Cond_1364_1_plus_InvokeMethod2(x1, x3, x4)
Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_1364_1_plus_InvokeMethod1(x1, x2, x4, x5)
Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1364_1_plus_InvokeMethod(x1, x2, x4, x5, x6)
Cond_1333_0_plus_LE(x1, x2, x3, x4) → Cond_1333_0_plus_LE(x1, x2, x4)

Filtered unneeded arguments:


Cond_1333_0_plus_LE1(x1, x2, x3) → Cond_1333_0_plus_LE1(x1)
1380_1_plus_InvokeMethod(x1, x2, x3) → 1380_1_plus_InvokeMethod(x1, x2)
Cond_1380_1_plus_InvokeMethod(x1, x2, x3, x4) → Cond_1380_1_plus_InvokeMethod(x1, x2)
Cond_1380_1_plus_InvokeMethod1(x1, x2, x3) → Cond_1380_1_plus_InvokeMethod1(x1)

Combined rules. Obtained 1 rules for P and 26 rules for R.


Finished conversion. Obtained 1 rules for P and 26 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → 1580_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return, x1) → 1580_0_plus_Return
1364_1_plus_InvokeMethod(1351_0_plus_Return, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x3)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x1, 0) → 1537_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0) → 1537_0_plus_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(2): 1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(x1[2] > 0, x0[2], x1[2])
(3): COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], x1[3] - 1)

(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(1) -> (2), if ((x0[1] - 1* x0[2])∧(x1[1]* x1[2]))


(2) -> (3), if ((x1[2] > 0* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] - 1* x1[2]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(6) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE(&&(<=(x1, 0), >(x0, 0)), x0, x1) the following chains were created:
  • We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (1)    (&&(<=(x1[0], 0), >(x0[0], 0))=TRUEx0[0]=x0[1]x1[0]=x1[1]1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(x1[0], 0)=TRUE>(x0[0], 0)=TRUE1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)







For Pair COND_1333_0_PLUS_LE(TRUE, x0, x1) → 1333_0_PLUS_LE(-(x0, 1), x1) the following chains were created:
  • We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (8)    (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)







For Pair 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE1(>(x1, 0), x0, x1) the following chains were created:
  • We consider the chain 1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2]), COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1)) which results in the following constraint:

    (13)    (>(x1[2], 0)=TRUEx0[2]=x0[3]x1[2]=x1[3]1333_0_PLUS_LE(x0[2], x1[2])≥NonInfC∧1333_0_PLUS_LE(x0[2], x1[2])≥COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))



    We simplified constraint (13) using rule (IV) which results in the following new constraint:

    (14)    (>(x1[2], 0)=TRUE1333_0_PLUS_LE(x0[2], x1[2])≥NonInfC∧1333_0_PLUS_LE(x0[2], x1[2])≥COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (17) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (18)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)







For Pair COND_1333_0_PLUS_LE1(TRUE, x0, x1) → 1333_0_PLUS_LE(x0, -(x1, 1)) the following chains were created:
  • We consider the chain COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1)) which results in the following constraint:

    (20)    (COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3])≥1333_0_PLUS_LE(x0[3], -(x1[3], 1))∧(UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE(&&(<=(x1, 0), >(x0, 0)), x0, x1)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)

  • COND_1333_0_PLUS_LE(TRUE, x0, x1) → 1333_0_PLUS_LE(-(x0, 1), x1)
    • ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)

  • 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE1(>(x1, 0), x0, x1)
    • (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)

  • COND_1333_0_PLUS_LE1(TRUE, x0, x1) → 1333_0_PLUS_LE(x0, -(x1, 1))
    • ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1380_1_plus_InvokeMethod(x1, x2)) = [-1]   
POL(1351_0_plus_Return) = [-1]   
POL(0) = 0   
POL(1397_0_plus_Return) = [-1]   
POL(1580_0_plus_Return) = [-1]   
POL(1364_1_plus_InvokeMethod(x1, x2, x3)) = [-1]   
POL(1379_0_plus_Return(x1, x2)) = [-1]   
POL(1537_0_plus_Return(x1, x2)) = [-1]   
POL(1333_0_PLUS_LE(x1, x2)) = [-1] + x2   
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + x3   
POL(&&(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(COND_1333_0_PLUS_LE1(x1, x2, x3)) = [-1] + x3   

The following pairs are in P>:

COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1))

The following pairs are in Pbound:

1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])

The following pairs are in P:

1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])

There are no usable rules.

(7) Complex Obligation (AND)

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → 1580_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return, x1) → 1580_0_plus_Return
1364_1_plus_InvokeMethod(1351_0_plus_Return, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x3)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x1, 0) → 1537_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0) → 1537_0_plus_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(2): 1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(x1[2] > 0, x0[2], x1[2])

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(1) -> (2), if ((x0[1] - 1* x0[2])∧(x1[1]* x1[2]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → 1580_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return, x1) → 1580_0_plus_Return
1364_1_plus_InvokeMethod(1351_0_plus_Return, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x3)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x1, 0) → 1537_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0) → 1537_0_plus_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(11) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(13) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) the following chains were created:
  • We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (1)    (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)







For Pair 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]) the following chains were created:
  • We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (6)    (&&(<=(x1[0], 0), >(x0[0], 0))=TRUEx0[0]=x0[1]x1[0]=x1[1]1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<=(x1[0], 0)=TRUE>(x0[0], 0)=TRUE1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
    • ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)

  • 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2   
POL(1333_0_PLUS_LE(x1, x2)) = [1] + [2]x1 + [-1]x2   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(>(x1, x2)) = [-1]   

The following pairs are in P>:

1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])

The following pairs are in Pbound:

1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])

The following pairs are in P:

COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])

There are no usable rules.

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])


The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → 1580_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return, x1) → 1580_0_plus_Return
1364_1_plus_InvokeMethod(1351_0_plus_Return, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x3)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x1, 0) → 1537_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0) → 1537_0_plus_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(3): COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], x1[3] - 1)

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(19) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → 1580_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return, x1) → 1580_0_plus_Return
1364_1_plus_InvokeMethod(1351_0_plus_Return, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x3)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x1, 0) → 1537_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1) → 1537_0_plus_Return(x0, x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0) → 1537_0_plus_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(20) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(21) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])

(1) -> (0), if ((x0[1] - 1* x0[0])∧(x1[1]* x1[0]))


(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))



The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(22) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) the following chains were created:
  • We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (1)    (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)







For Pair 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]) the following chains were created:
  • We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:

    (6)    (&&(<=(x1[0], 0), >(x0[0], 0))=TRUEx0[0]=x0[1]x1[0]=x1[1]1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<=(x1[0], 0)=TRUE>(x0[0], 0)=TRUE1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
    • ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)

  • 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(1333_0_PLUS_LE(x1, x2)) = [-1] + x1 + [-1]x2   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(>(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])

The following pairs are in Pbound:

1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])

The following pairs are in P:

1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])

There are no usable rules.

(23) Complex Obligation (AND)

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(x1[0] <= 0 && x0[0] > 0, x0[0], x1[0])


The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(25) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(26) TRUE

(27) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(x0[1] - 1, x1[1])


The set Q consists of the following terms:
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
1380_1_plus_InvokeMethod(1580_0_plus_Return, x0)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1), x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return, x0, 0)

(28) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(29) TRUE

(30) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
457_0_times_NE(x0, 0) → 596_0_times_Return(x0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, x0), 0, x0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, 0), 0, 0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, x1), x0, x1)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, 0), x0, 0)
1328_1_times_InvokeMethod(1351_0_plus_Return, x1, x2) → 1361_0_times_Return
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1) → 1522_0_times_Return(x2)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2) → 1566_0_times_Return(x0)
1328_1_times_InvokeMethod(1397_0_plus_Return, x1, x2) → 1566_0_times_Return(1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1522_0_times_Return(1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE(x1 > 0, x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1) → 1364_1_plus_InvokeMethod(1333_0_plus_LE(x0, x1 - 1), x1, x0, x1 - 1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x2, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod(x2 > 0, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2, x1, 0) → Cond_1364_1_plus_InvokeMethod1(x0 > 0, 1580_0_plus_Return(x0), x2, x1, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + x0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x2, x1, 0) → Cond_1364_1_plus_InvokeMethod2(1 > 0, 1397_0_plus_Return, x2, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + 1)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod3(1 > 0, 1379_0_plus_Return(x0, x1), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE1(x1 <= 0 && x0 <= 0, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1) → 1351_0_plus_Return
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE2(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1387_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE3(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1417_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE4(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1459_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE5(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1507_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE6(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1550_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE7(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1333_0_plus_LE(x0 - 1, x1), x0 - 1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2) → Cond_1380_1_plus_InvokeMethod(x0 > 0, 1580_0_plus_Return(x0), x2)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x2) → 1580_0_plus_Return(1 + x0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → Cond_1380_1_plus_InvokeMethod1(1 > 0, 1397_0_plus_Return, x2)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x2) → 1580_0_plus_Return(1 + 1)

The integer pair graph contains the following rules and edges:
(0): 457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(x1[0] > 0, x0[0], x1[0])
(1): COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], x1[1] - 1)

(0) -> (1), if ((x1[0] > 0* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(1) -> (0), if ((x0[1]* x0[0])∧(x1[1] - 1* x1[0]))



The set Q consists of the following terms:
457_0_times_NE(x0, 0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x1)
1328_1_times_InvokeMethod(1351_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2)
1328_1_times_InvokeMethod(1397_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1333_0_plus_LE(x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1, x2, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x1, x2, 0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x1)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x0)

(31) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 457_0_TIMES_NE(x0, x1) → COND_457_0_TIMES_NE(>(x1, 0), x0, x1) the following chains were created:
  • We consider the chain 457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0]), COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1)) which results in the following constraint:

    (1)    (>(x1[0], 0)=TRUEx0[0]=x0[1]x1[0]=x1[1]457_0_TIMES_NE(x0[0], x1[0])≥NonInfC∧457_0_TIMES_NE(x0[0], x1[0])≥COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x1[0], 0)=TRUE457_0_TIMES_NE(x0[0], x1[0])≥NonInfC∧457_0_TIMES_NE(x0[0], x1[0])≥COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)







For Pair COND_457_0_TIMES_NE(TRUE, x0, x1) → 457_0_TIMES_NE(x0, -(x1, 1)) the following chains were created:
  • We consider the chain COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1)) which results in the following constraint:

    (7)    (COND_457_0_TIMES_NE(TRUE, x0[1], x1[1])≥NonInfC∧COND_457_0_TIMES_NE(TRUE, x0[1], x1[1])≥457_0_TIMES_NE(x0[1], -(x1[1], 1))∧(UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_66] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 457_0_TIMES_NE(x0, x1) → COND_457_0_TIMES_NE(>(x1, 0), x0, x1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)

  • COND_457_0_TIMES_NE(TRUE, x0, x1) → 457_0_TIMES_NE(x0, -(x1, 1))
    • ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_66] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(457_0_times_NE(x1, x2)) = [-1]   
POL(0) = 0   
POL(596_0_times_Return(x1)) = [-1]   
POL(754_1_times_InvokeMethod(x1, x2, x3)) = [-1]   
POL(1328_1_times_InvokeMethod(x1, x2, x3)) = [-1]   
POL(1333_0_plus_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(1361_0_times_Return) = [-1]   
POL(1522_0_times_Return(x1)) = [-1]   
POL(1566_0_times_Return(x1)) = [-1]   
POL(1351_0_plus_Return) = [-1]   
POL(1537_0_plus_Return(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x1 + [-1]x2   
POL(1580_0_plus_Return(x1)) = x1   
POL(1397_0_plus_Return) = [-1]   
POL(1) = [1]   
POL(1379_0_plus_Return(x1, x2)) = [-1] + [-1]x1 + [-1]x2   
POL(Cond_1333_0_plus_LE(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(>(x1, x2)) = [-1]   
POL(1364_1_plus_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x1 + [-1]x2 + [-1]x3   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2   
POL(Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x4 + [-1]x3   
POL(Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2   
POL(Cond_1333_0_plus_LE1(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(Cond_1333_0_plus_LE2(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(1380_1_plus_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(1387_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(Cond_1333_0_plus_LE3(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(1417_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(Cond_1333_0_plus_LE4(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(1459_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(Cond_1333_0_plus_LE5(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(1507_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(Cond_1333_0_plus_LE6(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(1550_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(Cond_1333_0_plus_LE7(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(Cond_1380_1_plus_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2   
POL(Cond_1380_1_plus_InvokeMethod1(x1, x2, x3)) = [-1] + [-1]x3   
POL(457_0_TIMES_NE(x1, x2)) = [2]x2   
POL(COND_457_0_TIMES_NE(x1, x2, x3)) = [2]x3   

The following pairs are in P>:

COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1))

The following pairs are in Pbound:

457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])

The following pairs are in P:

457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])

There are no usable rules.

(32) Complex Obligation (AND)

(33) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
457_0_times_NE(x0, 0) → 596_0_times_Return(x0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, x0), 0, x0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, 0), 0, 0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, x1), x0, x1)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, 0), x0, 0)
1328_1_times_InvokeMethod(1351_0_plus_Return, x1, x2) → 1361_0_times_Return
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1) → 1522_0_times_Return(x2)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2) → 1566_0_times_Return(x0)
1328_1_times_InvokeMethod(1397_0_plus_Return, x1, x2) → 1566_0_times_Return(1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1522_0_times_Return(1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE(x1 > 0, x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1) → 1364_1_plus_InvokeMethod(1333_0_plus_LE(x0, x1 - 1), x1, x0, x1 - 1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x2, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod(x2 > 0, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2, x1, 0) → Cond_1364_1_plus_InvokeMethod1(x0 > 0, 1580_0_plus_Return(x0), x2, x1, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + x0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x2, x1, 0) → Cond_1364_1_plus_InvokeMethod2(1 > 0, 1397_0_plus_Return, x2, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + 1)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod3(1 > 0, 1379_0_plus_Return(x0, x1), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE1(x1 <= 0 && x0 <= 0, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1) → 1351_0_plus_Return
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE2(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1387_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE3(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1417_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE4(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1459_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE5(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1507_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE6(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1550_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE7(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1333_0_plus_LE(x0 - 1, x1), x0 - 1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2) → Cond_1380_1_plus_InvokeMethod(x0 > 0, 1580_0_plus_Return(x0), x2)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x2) → 1580_0_plus_Return(1 + x0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → Cond_1380_1_plus_InvokeMethod1(1 > 0, 1397_0_plus_Return, x2)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x2) → 1580_0_plus_Return(1 + 1)

The integer pair graph contains the following rules and edges:
(0): 457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(x1[0] > 0, x0[0], x1[0])


The set Q consists of the following terms:
457_0_times_NE(x0, 0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x1)
1328_1_times_InvokeMethod(1351_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2)
1328_1_times_InvokeMethod(1397_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1333_0_plus_LE(x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1, x2, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x1, x2, 0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x1)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x0)

(34) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(35) TRUE

(36) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
457_0_times_NE(x0, 0) → 596_0_times_Return(x0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, x0), 0, x0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(0, 0), 0, 0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, x1), x0, x1)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x3) → 1328_1_times_InvokeMethod(1333_0_plus_LE(x0, 0), x0, 0)
1328_1_times_InvokeMethod(1351_0_plus_Return, x1, x2) → 1361_0_times_Return
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1) → 1522_0_times_Return(x2)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2) → 1566_0_times_Return(x0)
1328_1_times_InvokeMethod(1397_0_plus_Return, x1, x2) → 1566_0_times_Return(1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1) → 1522_0_times_Return(1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE(x1 > 0, x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1) → 1364_1_plus_InvokeMethod(1333_0_plus_LE(x0, x1 - 1), x1, x0, x1 - 1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x2, x1, 0) → 1379_0_plus_Return(x1, x2)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod(x2 > 0, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + x2)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2, x1, 0) → Cond_1364_1_plus_InvokeMethod1(x0 > 0, 1580_0_plus_Return(x0), x2, x1, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + x0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x2, x1, 0) → Cond_1364_1_plus_InvokeMethod2(1 > 0, 1397_0_plus_Return, x2, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x2, x1, 0) → 1537_0_plus_Return(x1, x2, 1 + 1)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x3, x0, x1) → Cond_1364_1_plus_InvokeMethod3(1 > 0, 1379_0_plus_Return(x0, x1), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x3, x0, x1) → 1537_0_plus_Return(x0, x3, 1 + 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE1(x1 <= 0 && x0 <= 0, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1) → 1351_0_plus_Return
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE2(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1387_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE3(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1417_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE4(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1459_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE5(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1507_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE6(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1550_0_plus_Return(x0 - 1, x1), x0 - 1)
1333_0_plus_LE(x0, x1) → Cond_1333_0_plus_LE7(x1 <= 0 && x0 > 0, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1) → 1380_1_plus_InvokeMethod(1333_0_plus_LE(x0 - 1, x1), x0 - 1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x2) → Cond_1380_1_plus_InvokeMethod(x0 > 0, 1580_0_plus_Return(x0), x2)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x2) → 1580_0_plus_Return(1 + x0)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x2) → Cond_1380_1_plus_InvokeMethod1(1 > 0, 1397_0_plus_Return, x2)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x2) → 1580_0_plus_Return(1 + 1)

The integer pair graph contains the following rules and edges:
(1): COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], x1[1] - 1)


The set Q consists of the following terms:
457_0_times_NE(x0, 0)
754_1_times_InvokeMethod(596_0_times_Return(x0), x0, 0)
754_1_times_InvokeMethod(1361_0_times_Return, 0, x0)
754_1_times_InvokeMethod(1522_0_times_Return(x0), x1, x2)
754_1_times_InvokeMethod(1566_0_times_Return(x0), 0, x1)
1328_1_times_InvokeMethod(1351_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x0, x1)
1328_1_times_InvokeMethod(1580_0_plus_Return(x0), x1, x2)
1328_1_times_InvokeMethod(1397_0_plus_Return, x0, x1)
1328_1_times_InvokeMethod(1379_0_plus_Return(x0, x1), x0, x1)
1333_0_plus_LE(x0, x1)
Cond_1333_0_plus_LE(TRUE, x0, x1)
1364_1_plus_InvokeMethod(1351_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
Cond_1364_1_plus_InvokeMethod(TRUE, 1537_0_plus_Return(x0, x1, x2), x3, x0, x1)
1364_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1, x2, 0)
Cond_1364_1_plus_InvokeMethod1(TRUE, 1580_0_plus_Return(x0), x1, x2, 0)
1364_1_plus_InvokeMethod(1397_0_plus_Return, x0, x1, 0)
Cond_1364_1_plus_InvokeMethod2(TRUE, 1397_0_plus_Return, x0, x1, 0)
1364_1_plus_InvokeMethod(1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1364_1_plus_InvokeMethod3(TRUE, 1379_0_plus_Return(x0, x1), x2, x0, x1)
Cond_1333_0_plus_LE1(TRUE, x0, x1)
Cond_1333_0_plus_LE2(TRUE, x0, x1)
Cond_1333_0_plus_LE3(TRUE, x0, x1)
Cond_1333_0_plus_LE4(TRUE, x0, x1)
Cond_1333_0_plus_LE5(TRUE, x0, x1)
Cond_1333_0_plus_LE6(TRUE, x0, x1)
Cond_1333_0_plus_LE7(TRUE, x0, x1)
1380_1_plus_InvokeMethod(1351_0_plus_Return, 0)
1380_1_plus_InvokeMethod(1580_0_plus_Return(x0), x1)
Cond_1380_1_plus_InvokeMethod(TRUE, 1580_0_plus_Return(x0), x1)
1380_1_plus_InvokeMethod(1397_0_plus_Return, x0)
Cond_1380_1_plus_InvokeMethod1(TRUE, 1397_0_plus_Return, x0)

(37) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(38) TRUE